Submit Manuscript  

Article Details

Antioxidant Response of Osteoblasts to Doxycycline in an Inflammatory Model Induced by C-reactive Protein and Interleukin-6

[ Vol. 14 , Issue. 1 ]


A. Tilakaratne and Mena Soory   Pages 14 - 22 ( 9 )


Objectives: Investigation of osteoblastic responses to oxidative stress, induced by C-reactive protein (CRP) and IL-6 and ameliorating effects of doxycycline (Dox); using assays for 5-alpha dihydrotestosterone (DHT) as an antioxidant marker of healing. IL-6 and CRP are risk markers of periodontitis and prevalent comorbidities in periodontitis subjects. Methods: Confluent monolayer cultures of osteoblasts were incubated with radiolabelled testosterone (14C-T) as substrate, in the presence or absence (Control) of pre-determined optimal concentrations of CRP, IL-6, Dox; alone and in combination (n=8) for 24h in MEM. The eluent was solvent-extracted for steroid metabolites. They were separated using TLC in a benzene/ acetone solvent system 4:1 v/v; and quantified using radioisotope scanning. The identity of formed metabolites was confirmed using the mobility of cold standards added to the samples and disclosed in iodine. Further confirmation of the authenticity of DHT was carried out by combined gas chromatrography-mass spectrometry, after derivatization to pentafluorobenzyloxime trimethyl silyl ether. Results: The yields of DHT from 14C-testosterone showed 2-fold and 1.8-fold- inhibition in response to IL-6 and CRP respectively and 28% stimulation in response to Dox, via the 5-alpha reductase pathway. The combination of IL-6 + CRP showed a 2-fold reduction in the yields of DHT, elevated to control values when combined with Dox (n=8; p<0.001). Yields of 4-androstenedione showed an inverse relationship to those of DHT, in response to the agents tested, in keeping with the 17-beta hydroxysteroid dehydrogenase pathway. Conclusions: Inhibition of DHT synthesis in osteoblasts by IL-6 and CRP was overcome by doxycycline. Oxidative actions of IL-6 and CRP; and antioxidant actions of Dox are reinforced by the metabolic yields of DHT in response to agents tested. Using a novel metabolically active model allows closer extrapolation to in vivo conditions; in the context of adjunctive therapeutic applications for periodontitis and prevalent comorbidities.


Antioxidant responses, CRP, doxycycline, IL-6, DHT and AR, osteoblasts, periodontitis and systemic comorbidities, redox healing, risk markers.


King's College London Dental Institute, Denmark Hill, London SE5 9RW, UK.

Read Full-Text article